
Linux for life scientists
Introduction to Linux CLI

Eline Turcksin

Course overview: (tentative)

1. What is Linux?
2. Exploring the command line
3. Navigating the file system
4. Manipulating files and directories
5. File contents
6. Input, output and pipelines
7. Installing software & error handling
8. Bash scripting

0. TO DO beforehand

TO DO

 Install WSL (Windows users)
 Install homebrew (MacOS users)
 Install VSCode
 Request VSC account
 Check out terminal environment => will do together
 https://sandbox.bio/ to practice commands during course

https://sandbox.bio/

Download course material

 https://tinyurl.com/linuxcourse2024
 Click 'Download'

https://tinyurl.com/linuxcourse2024

1. Introduction

Some Linux (mis)conceptions
 It's difficult to install and work with

 It's totally different from Windows

 For everything you want to do, you need to write commands on a 'black screen'

 To work with Linux, you need to know/memorize so much commands, paths,
settings

 These Linux/programming guys just seem like wizards

Some Linux (mis)conceptions
 It's difficult to install and work with

No
It's totally different from Windows

Graphical part: No
Command line interface: Yes

For everything you want to do, you need to write commands on a 'black screen'
Not necessarily
Depends on what you want/need to do and how advanced you need to go
For data handling, this is usually true.

To work with Linux, you need to know/memorize so much commands, paths, settings
No
Need to learn where to efficiently find all the information (memorizing come gradually)

These Linux/programming guys just seem like wizards
Totally true 

Some Linux (mis)conceptions
 It's difficult to install and work with

No
 It's totally different from Windows

 Graphical part: No
 Command line interface: Yes

For everything you want to do, you need to write commands on a 'black screen'
Not necessarily
Depends on what you want/need to do and how advanced you need to go
For data handling, this is usually true.

To work with Linux, you need to know/memorize so much commands, paths, settings
No
Need to learn where to efficiently find all the information (memorizing come gradually)

These Linux/programming guys just seem like wizards
Totally true 

Some Linux (mis)conceptions
 It's difficult to install and work with

No
 It's totally different from Windows

 Graphical part: No
 Command line interface: Yes

 For everything you want to do, you need to write commands on a 'black screen'
 Not necessarily
 Depends on what you want/need to do and how advanced you need to go
 For data handling, this is usually true.

To work with Linux, you need to know/memorize so much commands, paths, settings
No
Need to learn where to efficiently find all the information (memorizing come gradually)

These Linux/programming guys just seem like wizards
Totally true 

Some Linux (mis)conceptions
 It's difficult to install and work with

No
 It's totally different from Windows

 Graphical part: No
 Command line interface: Yes

 For everything you want to do, you need to write commands on a 'black screen'
 Not necessarily
 Depends on what you want/need to do and how advanced you need to go
 For data handling, this is usually true.

 To work with Linux, you need to know/memorize so much commands, paths, settings
 No
 Need to learn where to efficiently find all the information (memorizing come gradually)

These Linux/programming guys just seem like wizards
Totally true 

Some Linux (mis)conceptions
 It's difficult to install and work with

No
 It's totally different from Windows

 Graphical part: No
 Command line interface: Yes

 For everything you want to do, you need to write commands on a 'black screen'
 Not necessarily
 Depends on what you want/need to do and how advanced you need to go
 For data handling, this is usually true.

 To work with Linux, you need to know/memorize so much commands, paths, settings
 No
 Need to learn where to efficiently find all the information (memorizing come gradually)

 These Linux/programming guys just seem like wizards
Totally true 

What is Linux?

 Operating system (OS)
 An alternative to Windows (macOS)

 Graphic User Interface (GUI)
 Similar in use as Windows

 Command-Line Interface (CLI)
 Terminal
 “Under the hood”

 Availability
 Many Linux distributions (=version)
 Usually free (not always e.g., RedHat)

What is Linux?

 Operating system (OS)
 An alternative to Windows (macOS)

 Graphic User Interface (GUI)
 Similar in use as Windows

 Command-Line Interface (CLI)
 Terminal
 “Under the hood”

 Availability
 Many Linux distributions (=version)
 Usually free (not always e.g., RedHat)

What is the CLI?

 Command-Line Interface (CLI)
 CLI: typing commands
 Useful for accessing/working with data

• Very powerful for data analysis
• Learning curve

 System administration
 Plethora of CLI tools
 Linux/MacOS: terminal
 Windows: additional software needed

• (MobaXterm: https://mobaxterm.mobatek.net/download-home-edition.html)
• Windows Subsystem for Linux https://learn.microsoft.com/en-us/windows/wsl/install

https://mobaxterm.mobatek.net/download-home-edition.html
https://learn.microsoft.com/en-us/windows/wsl/install

What is the shell?

 A program
 Command line interpreter: waits for input and performs tasks
 Input language is a scripting language
 Shell provides access to 100s of commands
 Different shell programs exist
 Linux systems: bash (Bourne Again Shell)
 On MacOS: default is zsh, but making use of homebrew, also all Linux commands

are available (though bash should be installed by default)

Linux Filesystem

 File System Tree
 1 big directory structure

• No separate disks (Windows C:\ , D:\)

 Directory separators (path)
• Linux = forward slash /
• Windows = backwards slash \

Linux Filesystem

 Paths
 Windows
(GUI)

Linux Filesystem

 Paths
 Linux
(GUI)

Linux Filesystem

 File System Tree
 1 big directory structure

• No separate disks (Windows C:\ , D:\)
 Directory separators (path)

• Linux = forward slash /
• Windows = backwards slash \

 Top level = root directory, or just /
 Subdirectories

• /home/james
 Different folders = different purpose

• /bin : holds programs (=binaries)
• /tmp: to store temporary files
• /home: user-specific folders

Documentation
 Essential when using CLI (or when programming)!
 Learning to get the information you need is a major

part of working in Linux/programming
 Sources:

• Google (duh )
• Useful websites like StackOverflow (SO) (forums for variety of topics, including Linux commands)
• But Google as a starting point is usually way to go

• explainshell.com
• Dissects bash command and explains every option

https://explainshell.com/

Documentation
 Sources
 All (or almost all) commands have a ‘help’ option (either -h or --help):

• $ mkdir --help
• Summary of most useful options
• Usually not exhaustive

• Syntax
• Optional parts are in between []
• ... to indicate it can be more than one

Documentation
 Sources
 Man pages

• The full manual of a command

 Easiest with Google
• Example: man <command>
• https://linux.die.net/man

 CLI
• $ man <COMMAND>
• Opens a reader

• Scrollable: up/down arrows
• To quit: press 'q'

https://linux.die.net/man

Documentation
 Sources
 ChatGPT
 Advantage

• Quick/elaborate explanations to
your specific prompt

• Works well for CLI but also when
programming!

 Disadvantages
• Sometimes false/inaccurate

information
• Need for double checking/testing

Documentation
 Sources
 Make sure to double check

• test code, critically inspect output
• There might be easier solutions
• Compare to other documentation

2. Exploring the command line

Command line basics
 “$”: text preceding it = prompt; text followed by it = command
 Type a command, press enter to execute
 Autocomplete with TAB key
 Commands are
 Case sensitive (myFile vs myfile)
 Space sensitive (my file vs myfile)

 Mouse/clicking doesn’t work! 
 Edit commands: use arrow keys (left and right)
 Command history: arrow keys (up and down)

Command line basics
 Copy pasting does not always work the same (depends on OS)
 Instead of CTRL + C/V, try CTRL + shift + C/V

 No undo button => watch out with replacing/removing files/dirs.

What are commands?
 Command = specific instruction
 Given by the user, directed at the computer’s operating system (windows, linux,…)
 Goal: let the computer perform a task or function

 Examples
 Changing location
 Creating directories (folder), files, …
 Change name of files, move things around
 Download software

 Why? (not GUI?)
 Faster, more powerful, can combine multiple actions in one command
 Not all tools/programs have a GUI

Anatomy of a command - simple
 Single command
 Some commands can be run by themselves, e.g.:

• $ cd = go to home directory (/home/user)
• $ ls = list the contents of the folder you’re currently in

 Most of the cases, they need some extra information…

Anatomy of a command - simple
 Adding arguments: tell a command what to perform the action on
 command + argument(s)

• $ cd /home/training
• $ ls my_data/

 How many arguments?
• Depends on command, sometimes optional

• E.g. $ mkdir folder1 folder2
• Creates ‘subfolder1’ and ‘subfolder2’

• Sometimes required
• E.g. $ mv important_file.txt important_folder
• Moves file (first argument) into directory (second argument)

Anatomy of a command - intermediate
 Adding options: modify a command’s behaviour
 command + options(s) + argument(s)
 Options change behavior of commands

• $ ls -l /home/training
• Print the content of the directory as before, but with more details (date created/modified, file

size…)

 Multiple options:
• $ ls -l –a -i

 Options start with one – or two - -; e.g.:
• $ ls -a : short option, usually one letter
• $ ls --all: long option, usually a word
• Both do the same

Anatomy of a command - options
 Options:
 Short options can be grouped, long options can’t

• $ ls -l -a -t -r ≡ ls -latr
• $ ls --list --all : can’t group, write in full

 Options don’t always have both a short and a long version
• Depends on the command
• Check documentation (see later)

 Some options need a value (integer or string; number or text)
• $ head -n 15
• $ biotool --input /home/user/RNAseq_data --output_type csv

Anatomy of a command: options
 Other example:
 $ rm and $ cp : when moving/copying folders you need to add the option –r
 Error often hints at the solution

The terminal

The terminal: command prompt
 eturcksin@DESKTOP1234:~$ <here your command will go>
 eturcksin = username
 DESKTOP-1234 = name of device you’re logged into (pc, server, …)
 ~ = current directory (after login, your home folder, so ~)
 $: separator between the end of the prompt and the command your typing

• Can differ between Linux flavors, can also be # or %
• Command prompt is often abbreviated to “$” instead of e.g. “eturcksin@DESKTOP1234:~$”

Quick recap

dtrump@imthebest:~/my_projects/US_elections$ rm -r evidence/

user device current directory cmd argument

option

Help with commands: shortcuts

Your cursor does not work in the terminal 
solution: arrows and shortcuts

Shortcut Function
CTRL L Prompt moves up; clears terminal
CTRL C Kill process you’re executing
CTRL arrows Move along words instead of characters
CTRL A/CTRL E Go to beginning/end of command
CTRL D Exit terminal

Help with commands: TAB completion

 Double TAB: when multiple possibilities exist, a suggestion list is given
• Add the specific part, then TAB again to complete

 It works similar for commands
 Safes a lot of typing!

 The TAB key is very useful when typing in the CLI
 Assists in completing command names and file/folder paths
 Single TAB: completes your prompt when only one possibility is present

Very useful: wildcards
 Wildcards = characters that can represent one or more other characters
 Useful to collect file/folders with a common name part
 Pattern searching
 * : any number of any character

• $ ls *.fastq.gz (Lists all the files ending in fastq.gz)
 ? : any single character

• $ ls sample.chr?.bam
• Will match sample.chr8.bam but nog sample.chr10.bam

 [0-9]/[a-z]/[A-Z]: a range of digits or letters
• $ ls sample.chr1[0-9].ba
• Will match sample.chr10.bam, sample.chr11.bam ... sample.chr19.bam

 You can combine wildcards for more complex patterns

Help with commands: good to know
 Case sensitivity
 Linux commands are (mostly) all lower-case
 CD : will return the error ‘CD: command not found’
 Common source of errors on CLI caused by using the wrong case

 There is no undo in Linux
 Deleting/overwriting is permanent!
 ‘Are you sure you want to delete this?’ : you better 
 Be mindful of ‘destructive’ commands and check your commands before executing

them
• remove, overwrite...

Exercises part 2

Terminal simulator
 Uniform terminal simulator to practice commands
 https://sandbox.bio/
 In nav header: Playgrounds > Terminal

Or directly to
 https://sandbox.bio/tutorials/playground

https://sandbox.bio/
https://sandbox.bio/tutorials/playground

Some exercises

45

 Intro - demo
 Let’s create a little directory structure

• $ ls
• $ mkdir james
• $ ls
• $ cd james
• $ mkdir projects data Downloads
• $ ls
• $ cd projects
• $ mkdir RNA_seq fwo paper
• $ touch fwo/summary.txt
• $ ls

 Tip: try to find directories and files by using tab

Some useful basic commands
 ls = list directory (folder) contents
 cd = change directories
 pwd = present work directory = current location
 touch = make a file
 mv = rename or move file/directory
 cp = copy file/directory
 rm = delete files/directories (!! Irreversible)

3. Navigating the filesystem

Linux Filesystem: root

 Root
 Only the ‘superuser’ can perform cmds
 = administrator space
 In practice: put “sudo” in front of cmds

• Only works in a space where you have
administrator privileges

 Indicates administrator permission
Need to type password (not visible!)

Linux Filesystem: home

 /home/user
 Home contains directories with usernames

• E.g. james, marie, guest, …

 Similar to users in Windows
 In your own directory: free to execute
cmds
 = space where you will perform your work
 Often abbreviated as ~

 $ cd without arguments will bring you always to /home/user

Navigating the file system

 Command cd (change directory)
 Current location: projects
 Want to go to ‘fwo’
 Absolute path
 Full path starting from root
 $ cd /home/james/fwo

 Relative path
 Respective from the current directory
 $ cd fwo

projects

Downloads
data

RNAseq

fwo
paper

Navigating the file system
 Shortcuts for navigating
 Current directory: . (single dot)

• cd fwo ≡ cd ./fwo
 1 directory above: .. (double dot)

• cd .. => projects
• cd ../../ => james

 Your home folder: ~ (tilde)
• cd /home/james ≡ cd ~ or cd ~/
• cd /home/james/fwo ≡ cd ~/fwo

 Previous folder: - (hyphen)
• cd -

 Long paths are possible
• cd ../data/fastq_files

projects

Downloads
data

RNAseq

fwo
paper

fastq_files

Exercises part 3

Some useful basic commands
 ls = list directory (folder) contents
 cd = change directories
 pwd = present work directory = current location
 touch = make a file
 mv = rename or move file/directory
 cp = copy file/directory
 rm = delete files/directories (!! Irreversible)
 rmdir = remove (empty) directories

Some exercises

54

 Exercise 1: start in project directory
 What is the difference between

• $ touch file1.txt .
• $ touch file2.txt
• $ touch ../file3.txt
• $ touch fwo/file4.txt
The difference between the commands is that the two first commands will make the files file1.txt
and file2.txt in the project directory (your current directory). The third command will make the
file3.txt in the directory above, here the james directory. The last command will make the file4.txt
in the fwo directory which is located in your current directory.

Some exercises

55

 Exercise 2: Start in the james directory
1. Go to /sys/module making use of a relative path

cd ../../../sys/
1. Navigate to the kernel directory, located in sys. Make use of an absolute path. Then go back with `cd -`. Navigate

again the that directory again with a relative path instead
cd /sys/kernel
cd –
cd kernel/

2. List the contents of the kernel directory
ls

3. Now without moving out of the kernel directory, list the contents of the power directory (it’s a subdirectory of sys)
ls ../power

1. Make a new directory in the kernel directory. What happens?
mkdir: cannot create directory new_dir: Operation not permitted
This is because you don’t have the right permissions to make a directory in this place, because this
is a directory in your root system, on your own computer you can do this with adding “sudo” upfront.

Some exercises

56

 Exercise 3.1
 Use the man pages, the --help option, ChatGPT to learn about the following

commands (how and why to use), compare the answers
• $ pwd

• Accessing the man pages: man pwd
• Accessing the help page: pwd --help

• $ mv
• man pwd
• pwd --help

• $ cp
• man pwd
• pwd --help

 Use this information to complete the next exercises

Some exercises

57

 Exercise 3.2
1. Go to your home directory again, or the folders below if needed
2. Copy the summary.txt file from the fwo directory to the data directory

cp james/projects/fwo/summary.txt james/data/

3. Rename the summary.txt file in the data directory to boring_exercise.txt
cd james/data/
mv summary.txt boring_exercise.txt

Some exercises

58

 Exercise 4
 The same as exercise 3 but you must stay in the Downloads directory

1. Navigate to the Downloads directory
cd /root/tutorial/james/Downloads

1. Copy the summary.txt file from the fwo directory to the data directory
cp ../projects/fwo/summary.txt ../data/

1. Rename the summary.txt file in the data directory to boring_exercise.txt
mv ../data/summary.txt ../data/boring_exercise.txt

Some exercises

59

 Exercise 5.1: ls
1. Create a file called .secret_message.txt in the data directory

touch data/.secret_message.txt
1. Can you find it using ls? Use info online to solve this

No, you can solve this by adding the –a option
1. Delete the boring_exercise.txt file

rm data/boring_exercise.txt
1. Remove the data directory

rmdir data/ -> doesn’t work because the directory isn’t empty
rm data/ -> doesn’t work because it is a directory and not a file, this can be solved by
adding the –r option

1. Problem/error? Try to google it!

Some exercises

60

 Exercise 5.2: ls
1. Try to find information about other ls options

man ls
ls --help

2. What do all these columns in $ ls –l mean?

The first column is about permissions, the second one is the link count (the amount of links to the file
or directory), then you have the owner's name and the group name. The fifth column is the size, then
you have the date and hour of last modified. And as last the name of the file/directory

Some exercises

61

 Exercise 6: naming constrictions
 Some characters are forbidden as a file or directory name ('/'), while some

characters are considered bad practice ('*', space, ':', '~', etc) and should be
avoided.

 Why is '/' forbidden and why should '*', space, ':' or '~' be avoided?
• See comments for complete information about this

 If you do happen to have a file with '*', space or '~' in the name, how could you
quote it (i.e. refer to it) in the command line?

You can use “ “ or ‘ ‘ or put an / upfront of the character you don’t to have
interpreted.

Intermezzo: WSL intro

WSL

63

 Subsystem  Linux system inside of your Windows system
 Access via terminal

WSL

64

 Subsystem  Linux system inside of your Windows system
 Access via terminal
 This terminal will

fulfill all your Linux
hopes and dreams

WSL

65

 Access via file system

WSL

66

 Other way also possible: access “Windows” files via WSL terminal
 To go to your C drive: $ cd /mnt/c
 Navigate through your contents making use of Linux commands!

4. Manipulating files and
directories

Reminders
 Linux is case-sensitive
 textfile.txt ≠ Textfile.txt
 If both present in same directory: different files

 Avoid using spaces in file/folder names
 Spaces separates different parts of your CLI command
 Prone to make command mistakes
 Preferably use underscores _ , hyphens – or camelCase

• full_file_name.txt
• fullFileName.txt

 If you really want to use spaces, quote/escape your filename
• “full file name.txt”
• full\ file\ name.txt

Files & directories: useful commands
 touch, mkdir, rm (-r)
 touch: make an empty file
 mkdir: make a directory
 rm: delete a file
 -r : to delete a directory, add this option

 Linux variant of zip: .gzip
 Commands gzip/gunzip
 $ gzip textfile.txt > textfile.txt.gz
 $ gunzip textfile.txt.gz > textfile.txt

 Read gzipped compressed files without unpacking
 $ zcat

File management: compressed files

 tar
 Makes a 'tarball' (.tar file): this is an archive file, holding multiple

folders/files
 Optionally, compresses it (.tar.gz)
 Compress

• $ tar -zcf <COMPRESSED_FILENAME>.tar.gz <DIRECTORY>
 Extract

• $ tar -zxf <COMPRESSED_FILENAME>.tar.gz <DIRECTORY>
 -z: indicate the file is/will be zipped
 -c: compress mode
 -x: decompress mode
 -f: name of the source/destination (gzipped) tarball

File management: archiving files

 Tar use?
 To transfer data, easier to transfer 1 file instead of (deep) directory

structure

File management: archiving files

 Echo
 Example: $ echo “This is a koffiekoek”
 This command will “echo” the text that you give it

• Here in the terminal This is a koffiekoek will appear
• This is only outputted in the terminal and not saved anywhere

File management: archiving files

Exercises part 4

Very useful: wildcards
 Wildcards = characters that can represent one or more other characters
 Useful to collect file/folders with a common name part
 Pattern searching
 * : any number of any character

• $ ls *.fastq.gz (Lists all the files ending in fastq.gz)
 ? : any single character

• $ ls sample.chr?.bam
• Will match sample.chr8.bam but nog sample.chr10.bam

 [0-9]/[a-z]/[A-Z]: a range of digits or letters
• $ ls sample.chr1[0-9].ba
• Will match sample.chr10.bam, sample.chr11.bam ... sample.chr19.bam
• To create files: use {0..9}

 You can combine wildcards for more complex patterns

Some exercises

76

 Intro
 Make a directory to work in, let's call it 'linuxcourse_2024'

• Put it in your personal (home) folder: /home/<user>/linuxcourse_2024
• Go into this directory
mkdir /home/<user>/linuxcourse_2024
cd /home/<user>/linuxcourse_2024

 Try the following commands and see what they do
• $ touch file.txt file2.txt
• $ tar –czvf file.tar.gz file.txt file2.txt
• $ ls -l
• $ rm file.txt file2.txt
• $ ls –la
• $ tar –xzvf file.tar.gz
• $ ls -la

 Intermediate
 Make a subdirectory called 'exercise1’ mkdir exercise1
 Make a file called 'test' with the text “This is a test” (reminder: echo) echo “This is a test” > test.txt
 Move the file into the directory 'exercise1’ mv test.txt exercise1/
 Show all the content of the directory in long list form and make file sizes human readable ls –lh exercise1/
 Make a tar file of the directory 'exercise1’ tar –cvf exercise1.tar exercise1/

Some exercises

77

 Advanced
 Make in one command 3 files with the following names file1A, file2A and file3B.
Touch file{1A,2A,3B}
 Make 10 files and they all are called file_test1, file_test2, …, file_test10
Touch file_test{1..10}
 Move all the file with an “A” in the 'exercise1' directory
Mv file*A exercise1/
 Write to the files with a “A” “this file is an A file”

• Reminder: what directory are you in right now?
echo "this file is an A file" > file1A; echo "this file is an A file" > file2A
 Remove the files file_test1, file_test2, …, file_test5

• Try it using a wild card !!! WATCH OUT WITH $ rm *
Rm file_test{1..5}
 Make a copy of the exercise directory and give it the name “exercise2”
Cp exercise1/ exercise2
 Make an exercise3 directory
Mkdir exercise3/
 Move the rest of the test files (6-10) in 'exercise2’
Mv file_test{6..10} exercise2
 Finally, remove both these directories (2 and 3)
rmdir exercise3/
Rm –r exercise2/
-> This must be done differently because the exercise3 directory is empty and the exercise2 directory contains files.

Some exercises

78

 Prepare downloaded data
 Data downloaded using intro (https://tinyurl.com/linuxcourse2024)
 Is a .tar.gz file

 Move and extract the file from your Downloads folder to the working directory
'linuxcourse_2024’

You can do this by the File Explorer on Windows
You can find your directory of your WSL by the following path
\\wsl.localhost\Ubuntu\home\<your_user_name>
Or go in linux to your windows file system by the following path
Cd /mnt/c/Users/<username_own_computer>/Downloads/
 Will take a bit of time, just let it run

https://tinyurl.com/linuxcourse2024

5. File contents

Reading text files
 cat ('concatenate')
 Prints one or more files to the screen

Reading text files
 head/tail [-<number_of_lines>]
 Prints the first/last lines of a file. Optionally, you can give the number of lines as an

option
 Convenient for big files or when you only want the beginning/end of a file

Reading text files
 cut
 Print specific columns of a file

• -f : number of column(s), can be a number, list or range
• Default column separator/delimiter is TAB

• -d : specify different delimiter
• | head -4 : Linux pipe (ignore for now)

Reading text files
 sort
 Print the sorted lines of a file

• Default sort: alphabetically
• -n : numeric sort
• -u : sort and removes duplicate lines
• -k: sort on 1 or more columns
• -V: version sort, use the numerical part to sort. Example: V1, V2, V3
• -t: change the column delimiter (when using –k). Default is TAB

Reading text files
 wc
 Get a word or line count for a file

• Default returns 3 numbers: line count, word count, byte count
• -l : only print line count (mostly used)
• When given multiple files, it will give individual file and overall counts

Text patterns search
 grep
 Print the lines of a file that match a certain word/pattern
 -i: case-insensitive search
 -n: show the matching line number
 -v: reverse, only show not matching lines
 -P : give a regular expression to match

Text patterns search
 Regular expressions (regex for short):

 Same idea as wildcards but more powerful
 Groups and ranges

• . (dot) : any character
• [0-9]: any digit
• [a-zA-Z]: any letter (upper/lower case)

 Quantifiers
• * : zero or more characters
• + : 1 or more characters
• ? : 0 or 1 character
• {m}: m characters ; {m,} : m or more characters ; {m,n} : number characters ranges from m to n

 Anchors
• ^ : from beginning of the line
• $: at the end of the line

 Very extensive:
• https://cheatography.com/davechild/cheat-sheets/regular-expressions/

https://cheatography.com/davechild/cheat-sheets/regular-expressions/

 Grep examples

Text patterns search: grep/regular expressions

 Inspect your input data before you begin
 Find patterns that you can use to parse or filter your wanted data

 When using regexes
 Use the documentation or check online what the proper syntax is
 You can copy-paste your regex in ChatGPT and just ask what's wrong with it

• Or just ask it how to parse your data in the first place 

Before we do exercises, some tips

Exercises part 5

Exercises
 Go to linuxcourse_2024/data_files/fastq

 Structure fastq file names
• <SAMPLE_NAME>_S<INCREMENT_NUMBER>_<SEQUENCING_LANE>_<READ>_001.fastq[.gz]

 List all files ending in "fastq“ ls –l *.fastq
 List all files with read 'R1' in file name ls –l *R1*
 List all fastq files with Sample5 in file name ls Sample5_*.fastq

• Try to avoid getting the files of sample Sample55
• Now show the same files on screen using TAB completion

 Using ls, can you find the largest file in this directory? ls –lSh (l = listform, S = sort, h = human readable)
• Find out the ls option to sort on size

 Go to linuxcourse_2024/data_files/ID_SNP
 List all VCF files with filename in the range of 200 and 399 ls –l {200..399}.vcf

• Try to avoid .vcf.idx files
• Use wildcards? Is it possible to get all files in 1 'range?’ yes

• If not, you can add additional items in your command (ls can take multiple arguments)
• ls <range with wildcards> … ...

Exercises
 Go to linuxcourse_2024/data_files/fastq

 How many lines does each fastq file of sample 5 contain? How much in total? wc -l *fastq
 Get the first line from every .fastq file? head -n 1 *.fastq
 Get all the lines (including line numbers) from all fastq files of sample 43 containing the string “@M00984”.
grep -n "@M00984" Sample43_S91_L001_*fastq

 Go to linuxcourse_2024/ data_files/ID_SNP
 Show the lines in 095.vcf that do NOT start with a “#”. grep -v "^#" 095.vcf

• Reminder: reverse grep
 In samples 1-9, find the variants with depth of coverage equal to 1 (DP=1) grep "DP=1;" 00{1..9}.vcf

• Did you restrict to DP=1 and ignored values between DP=10 and DP=19?
• Check the line structure on how to do this

 For the same files, can you get depth of coverage between 10 and 99? grep "DP=[1-9][0-9];" 00{1..9}.vcf
• Tip: amount of digits = 2

6. Input, output and pipelines

 Up until now: print everything on the screen
 What if you want to write to a file?

 Output streams
 Normal output (STDOUT)
 Error output (STDERR)

 Output redirection
 STDOUT: >
 STDERR: 2>

 Appending
 STDOUT: >>
 STDERR: 2>>

Data handling

 Separate streams but can be redirected to the same file
 Syntax: > <FILE> 2>&1

• grep something > /tmp/stdout.txt 2> /tmp/stderr.txt

Data handling

 Output of one command as input for another command
 Pipe |
 Write between the different commands

• $ grep something <FILE> | head -5

 Can be any number of commands
• Can make big one-liner scripts with this
• Really convenient to check something quickly

Data handling

 Again, investigate your input data
 Get a good feel of where you need to go
 Then work top-down

• Example: get the second tab-separated column, then get the fourth element
separated with ";" , etc...

 Check the intermediate output from each command
 Before you send it to another command
 Best way to check which step has an issue if something goes wrong

Before we do exercices, some tips

Exercises part 6

Exercises
 Go to linuxcourse_2024

 Echo the text “Creating new file…” to the file "echo_file.txt“ echo "new file .." > echo_file.txt
• Use the command 'echo' for this. First test out this command to see what it does
• Check out the content of the file cat echo_file.txt

 Append the text “Adding a second line to my text file” to the same file echo “Adding a second line to my text
file” >> echo_file.txt
• Check out the content of the file cat echo_file.txt

• Go to linuxcourse_2024/data_files/fastq
 How many files are in this directory? Print the results on the screen ls | wc -l
 For how many samples do we have *.fastq data? ls *.fastq | wc -l

• Use ls to first get the file names
• Extract the sample from the file name somehow and remove duplicate sample names ls | cut -d_ -f1

 Copy the file "Sample43_S91_L001_I1_001.fastq" to a file called "copied_file.fastq“
cat Sample43_S91_L001_I1_001.fastq > copied_file.fastq

• Don’t use the cp command but use output redirection to do the copy
• Verify by checking the content cat copied_file.fastq

Exercises
 Go to linuxcourse_2024/data_files/VARIANT_CALLING_FILES

 Count the number of files
• Write the result to the file “file_count.txt” ls | wc -l > ../file_count.txt
• Make it so that this file is made directly in your linuxcourse_2024 folder

 Get a size-sorted list of the files and print only the 3 largest files on the screen ls -Slh | head -n 3
• Besides ls, can you find a Linux command that can calculate file sizes online? du –h *

 Go to linuxcourse_2024/data_files/bed_files
 Get the last 1000 lines from the “large_gene_panel.bed” file and sort them on chromosome, and further sort

on genomic start position tail -n 1000 large_gene_panel.bed | sort -k1,1V -k2,2n
• Write the output to file "large_file_sorted.bed" in the same folder
• tail -n 1000 large_gene_panel.bed | sort -k1,1V -k2,2n > large_file_sorted.bed

 From “large_gene_panel.bed” select the exons corresponding to the AACS gene
 tail -n 1000 large_gene_panel.bed | sort -k1,1V -k2,2n > large_file_sorted.bed

• Write the genomic sorted output to file "AACS_exons.txt" in the same directory
• Are you sure you only selected AACS exons? If note, try to correct your output

• On what chromosome is the AACS located? Write the solution to the screen on 1 line

7. Software installation &
error handling

Ways to install & use software
 Imagine: experiment => fastq data
 You want to check the quality, don’t know where to start
 Google

 ChatGPT Always double check!

Ways to install & use software
 FastQC: A quality control tool for high throughput sequence data
 Download options:
 Package manager Linux (apt-get / dnf / yum …)
 Environment (Conda)
 Container (Docker)
 Manual (install binaries, add tool to $PATH), least convenient but sometimes

necessary
 …

 ! If you’re using WSL: follow Linux installation instructions, not Windows

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Ways to install & use software: apt get
 Installation with Linux package manager
 Installed on your “whole” system

 $ sudo apt-get install fastqc

 Why sudo?
 Apt-get can also be yum, dnf, …

 ! Not possible on HPC
Need sudo privileges
(administrator) which we (luckily)
don’t have 

Ways to install & use software: conda
 Conda allows for package and environment management
 Environment management: can create smaller environments within your system to

download specific software in. Only when you’re present in the environment, you
can run the tools you downloaded.

 Package management: easy to download specific versions of packages/software,
needed for a specific project

 Rule of thumb: for each new project, new conda environment
 Use of environments is good practice, to keep your general space “clean”: avoid

unwanted dependency errors

Ways to install & use software: conda
1. Download conda (we’re not doing this right now) only first time
2. Create environment
3. Activate environment
4. Download packages/tools
 Either you download the necessary tools one by one, by using
$ conda install <package name>
$ conda install <package1> <package2>

 Or you give it a file to build an environment from (.yaml)  important for HPC

5. Do your analysis
6. Deactivate environment

Ways to install & use software: conda (locally)
 Creating environment

Ways to install & use software: conda (locally)
 List existing envs, activate environment

Ways to install & use software: conda (locally)
 Install the tool(s) you want to

install
 Channels:
 Large repositories
 Contain packages
 E.g. bioconda repository, contains

lots of interesting software for
bioinformatics purposes

 Check if command is available
 Done!

Ways to install & use software: conda (HPC)
 On HPC => conda discouraged, because it creates lots of small files
 Still need software?
 Check if it’s already installed (in doubt, contact CalcUA)
 Not installed? Create a .yaml with your packages needed!

Ways to install & use software: conda (HPC)
 How to make a .yaml
 Create a new file
 Type the following info:

• Name of environment
• Channels to look in (usually

always these three)
• Dependencies = packages

= software you need
• Can define version (see python)

 Save file by naming it
name.yaml

Ways to install & use software: conda (HPC)
 How to make a .yaml
 OR: build an environment with all your wanted software on your own PC
 Then export your environment to a yaml
$ conda env_name export > environment.yml

 Then use this environment.yml in the next step

Ways to install & use software: conda (HPC)
 This .yaml is then used to create a container using the hpc-wrapper-

container command (see documentation CalcUA)
 Container?!
 Even more separation of your software
 Container = “box” where software is in “installed”
 You tell your PC to use this “box” when you want to run the tool
 No need to install it on the device: it’s installed in the box
 You pull the container, then run the command

 Conda_env.yaml container  then run your commands
 More HPC information: in CalcUA slides

Ways to install & use software: flowchart
 How to download my needed software?
 FIRST: Google the tools you need, inspect the size of your data, ask AI, look for

similar publications, compare alternatives, …
 Inspect the documentation of the tools

• Popular tools: easily findable on Google, conda, docker (containers) etc.
• Also often: GitHub pages  look for the README file: this should contain the information to

install the tool you want to use

 Determine what device you will use for your analysis
 Does your own PC suffice (enough memory, computational power, …)?
 Part of it on HPC of completely?

Ways to install & use software: flowchart
I need a tool

Is my PC capable
to run it?

HPC

Local
installation

Is it already installed
or available as a

module?

Yes

No

System wide:
$ sudo apt get install <name>

In separated environment: conda
$ conda install <name>
$ conda env create –f environment.yaml

Use container (see documentation)
…
Follow instructions in documentation of tools!

Yes Yay! Prepare a job script to run
your tool on the HPC (see
CalcUA’s information)

- Ask CalcUA’s advice/help
- System-wide installation:

Check if the software is supported by
EasyBuild -> let them know
If not, provide building instructions

- If you need conda environment:
- Create a yaml of your wanted tools
- Use the hpc-container-wrapper to create

your environment
- Run your tool(s) with the container!

No

 Fastp (alternative to FastQC)
 https://github.com/OpenGene/fastp
 Options to install:

• Bioconda
• Install binaries (?)

 Manual installation

Manual installation (local)

https://github.com/OpenGene/fastp

 Fastp (alternative to FastQC)
 Installation steps:
1. Download the tool (using wget)
2. Make the binary executable (meaning you give yourself the permission to run it)
3. Move the binary to a directory in your PATH

Manual installation (local)

 $PATH
 List of locations where Linux search for programs

• So when using cat, it knows where to search for this

 Is pre-defined but you can add paths to it
• Locations in the list are separated with ":"
• Order matters: first looks in first location, then second...

 You can change your $PATH variable
 Just as another variable
 Use command export to set the path for the current session (else you overwrite it!)

Linux environment: special variables

 Fastp (alternative to FastQC)
 Installation steps:
1. Download the tool (using wget)
2. Make the binary executable (meaning you give yourself the permission to run it)
3. Move the binary to a directory in your PATH

Often included in the PATH:
- /usr/local/bin (preferred for user-installed binaries)
- /usr/bin (for system-wide binaries)

To move $ sudo mv ./fastp /usr/local/bin/
4. Verify the installation (try to run the cmd)

Manual installation (local)

Error handling
 Unfortunately, running programs is not always smooth
 Something goes wrong: error code
 Code 0 means no errors occurred
 1: general errors, minor problems
 2: severe erorrs
 … goes up until 255…

 Get an error?
 Stay calm
 Read the error: it often indicates a lot
 Copy it and paste it into Google/AI

Error handling

Error handling

Exercises part 7

Running software
 Download fastQC on your system (not with conda) (tip: apt-get)
 Run fastQC in data_files/fastq, on all the fastq.gz files
 Direct the output to a subdirectory called fastqc_output
 Use the documentation of fastqc to find out how
 How do you select the .fastq.gz files only?
 What is your output? Is this useful?
mkdir fastqc_output
Fastqc –o fastqc_output/ data_files/fastq/*.fastq.gz

 Download multiqc (not with conda)
pip install multiqc

 Run multiqc
 Which input does it need? How do you run it? Why would you use this tool?
 multiqc fastqc_output/.

8. Bash scripting

 To code/write programs effectively, we make use of code editors
 Enables a nice interface to edit scripts
 VSCode is widely used, convenient code editor

VSCode

 Check installation VSCode
 Windows users: Connect to WSL
 Open data_files folder
 Create new folder ‘bash_scripts’

VSCode

 Bash = command processor
 Interprets all the commands you type
 Linux terminal = program to interact with bash
 So all this time, we've been using bash

 Single commands versus ...
 One-liner scripts

• Using pipes, seen previously

 Bash scripts
• For more advanced commands: sometime need to iterate a command

• for loop

Programming in bash

Programming in bash
Bash script: ends with .sh

shebang

After the #: comment, not interpreted

Bunch of commands

Run the script by: $ bash test.sh

 for loop
 Do something (one or more commands) for a list of files/folders/variables
 Syntax when making a script:

for <AN_ITEM> in <A_LIST_OF_ITEMS>
do

#do some stuff with the loop variable $<AN_ITEM>
done

 To use on command line, separating the different steps with semicolon ;
• In general: semicolon in bash works as a space: both separate commands
• for <AN_ITEM> in <A_LIST_OF_ITEMS>; do ...; done

Programming in bash

 for <AN_ITEM> in <A_LIST_OF_ITEMS>; do ... ; done

 <AN_ITEM> = Loop variable
• Can be any name. Name it to use in loop

 <A_LIST_OF_ITEMS>
• Can be a list of items

• Tycho Dale Philip
• Separated with a spaces

• Can be a command
• Need to enclose with backticks (`)

Programming in bash: FOR loop

 Loops or wildcards?
 Sometimes it's just a choice, previous example

 More advances commands require loops

Programming in bash: FOR loop

 Loops or wildcards?
 Sometimes it's just a choice, previous example

 More advances commands require loops

Programming in bash: FOR loop

Exercises part 8

 Exercise 1: introductory
You are given following bash script:
#!/bin/bash
echo "Welcome to Bash scripting!"
echo "Hello, ${USER}! Nice to meet you."
cd ~
echo "You have reached your destination: $PWD"
1. what does it do? It will print “welkom to bash scripting” in the terminal, then print

“Hello, <username>! Nice to meer you. Change the directory to the /home directory and
then print again in the termina “You have reached your destination: met het absolute
path van de home directory”

2. create a file and copy the script in there: $ nano bash_script1.sh
3. set the correct permissions: $ chmod +x bash_script1.sh
4. run the script: $./bash_script1.sh

Exercises

 Exercise 2: intermediate
1. Write a bash script that creates a file with following

contents:
the user who created the file,
the date when the file was created, and
the directory where the file is created.

Format this information however you like. Give the file a
unique name, so that it will not overwrite any of your own
files ;)
2. Run you script
3. Add your current working directory (where your script

is located! cd to the directory of your script if
needed!) to the path: $ export PATH=$PWD:$PATH
cd to another directory (e.g. your Desktop, somewhere where
your script is NOT located)
now you should be able to run your script by only typing the
filename, not its entire filepath (eg: bash_script2.sh)

Exercises
#!/bin/bash
Get the username of the user running the
scriptuser=$USER
Get the current working directory
current_dir=$PWD
Get the current date and time
date_created=$(date)
set a file name:
file_name=intro_linux_ex7.2.txt
ALTERNATIVE, but more advanced: generate a unique
file name: file_name=""info_file_$(date +%s).txt"“
Write the information to the file
echo ""Created by: $user"" > ""$file_name"“
echo ""Date created: $date_created"" >> ""$file_name"“
echo "“Directory: $current_dir"" >> ""$file_name""

 Exercise 3: advanced
What is the meaning of $1 in following bash script?
#!/bin/bash
A script to count the number of characters in a command-line argument
using wc
Use wc to count the number of characters
char_count=$(echo -n "$1" | wc -c)
Print the result
echo "The input '$1' has $char_count characters."

This is the first argument that you give while executing your script for example: $
script argument, then argument will be used in the script
Can you think of some use cases for $i?

Exercises

 Exercise 4: advanced
What does this script do?

#!/bin/bash
while echo -n "enter number: "; read NUM
do
if [$NUM -eq $NUM] 2>/dev/null; then
:

else
echo " $NUM is not a number"
continue

fi
if [[$(($NUM % 2)) -eq 0]]; then
echo " $NUM is an even number"
continue

fi
echo " $NUM is an odd number"
break

done

Exercises

 Exercise 1
1. Write a Bash script that creates 10 empty files named file1.txt, file2.txt, ...,

file10.txt in the current directory
2. Print a message to the terminal for each file created, confirming its creation.

Expected output

Exercises on FOR loops

 Exercise 2: Advanced
1. Create a directory called project.
2. Navigate into the project directory.
3. Create 5 files named file1.txt, file2.txt, ..., file5.txt.
4. Write the current date and time into each of the 5 files.
5. Copy all files with names starting with file into a new subdirectory called backup.
6. Rename all files in the backup directory by adding a .bak extension (e.g., file1.txt

→ file1.txt.bak).
7. Delete the original files (file1.txt to file5.txt) from the project directory.
8. Print a message indicating that the script completed successfully.

Exercises on FOR loops

Thank you for your attention!

140

	Linux for life scientists
	Course overview: (tentative)
	0. TO DO beforehand
	TO DO
	Download course material
	1. Introduction
	Some Linux (mis)conceptions
	Some Linux (mis)conceptions
	Some Linux (mis)conceptions
	Some Linux (mis)conceptions
	Some Linux (mis)conceptions
	Some Linux (mis)conceptions
	What is Linux?
	What is Linux?
	What is the CLI?
	What is the shell?
	Linux Filesystem
	Linux Filesystem
	Linux Filesystem
	Linux Filesystem
	Documentation
	Documentation
	Documentation
	Documentation
	Documentation
	2. Exploring the command line
	Command line basics
	Command line basics
	What are commands?
	Anatomy of a command - simple
	Anatomy of a command - simple
	Anatomy of a command - intermediate
	Anatomy of a command - options
	Anatomy of a command: options
	The terminal
	The terminal: command prompt
	Quick recap
	Help with commands: shortcuts
	Help with commands: TAB completion
	Very useful: wildcards
	Help with commands: good to know
	Exercises part 2
	Terminal simulator
	Some exercises
	Some useful basic commands
	3. Navigating the filesystem
	Linux Filesystem: root
	Linux Filesystem: home
	Navigating the file system
	Navigating the file system
	Exercises part 3
	Some useful basic commands
	Some exercises
	Some exercises
	Some exercises
	Some exercises
	Some exercises
	Some exercises
	Some exercises
	Some exercises
	Intermezzo: WSL intro
	WSL
	WSL
	WSL
	WSL
	4. Manipulating files and directories
	Reminders
	Files & directories: useful commands
	File management: compressed files
	File management: archiving files
	File management: archiving files
	File management: archiving files
	Exercises part 4
	Very useful: wildcards
	Some exercises
	Some exercises
	Some exercises
	5. File contents
	Reading text files
	Reading text files
	Reading text files
	Reading text files
	Reading text files
	Text patterns search
	Text patterns search
	Text patterns search: grep/regular expressions
	Before we do exercises, some tips
	Exercises part 5
	Exercises
	Exercises
	6. Input, output and pipelines
	Data handling
	Data handling
	Data handling
	Before we do exercices, some tips
	Exercises part 6
	Exercises
	Exercises
	7. Software installation & �error handling
	Ways to install & use software
	Ways to install & use software
	Ways to install & use software: apt get
	Ways to install & use software: conda
	Ways to install & use software: conda
	Ways to install & use software: conda (locally)
	Ways to install & use software: conda (locally)
	Ways to install & use software: conda (locally)
	Ways to install & use software: conda (HPC)
	Ways to install & use software: conda (HPC)
	Ways to install & use software: conda (HPC)
	Ways to install & use software: conda (HPC)
	Ways to install & use software: flowchart
	Ways to install & use software: flowchart
	Manual installation (local)
	Manual installation (local)
	Linux environment: special variables
	Manual installation (local)
	Error handling
	Error handling
	Error handling
	Exercises part 7
	Running software
	8. Bash scripting
	VSCode
	VSCode
	Programming in bash
	Programming in bash
	Programming in bash
	Programming in bash: FOR loop
	Programming in bash: FOR loop
	Programming in bash: FOR loop
	Exercises part 8
	Exercises
	Exercises
	Exercises
	Exercises
	Exercises on FOR loops
	Exercises on FOR loops
	Thank you for your attention!

